Exercise 4A

1 a $|z|=6$

$x^{2}+y^{2}=36$
b $|z|=10$

$$
x^{2}+y^{2}=100
$$

c $|z-3|=2$

$(x-3)^{2}+y^{2}=4$
d $|z+3 i|=3$

$x^{2}+(y+3)^{2}=9$

Further Pure Maths 2

1 e $|z-4 i|=5$

$x^{2}+(y-4)^{2}=25$
f $|z+1|=1$

$$
(x+1)^{2}+y^{2}=1
$$

g $|z-1-\mathrm{i}|=5$

$$
(x-1)^{2}+(y-1)^{2}=25
$$

h $|z+3+4 i|=4$

$(x+3)^{2}+(y+4)^{2}=16$

1 i $|z-5+6 \mathrm{i}|=5$

$$
(x-5)^{2}+(y+6)^{2}=25
$$

2 a $|z-5-4 i|=8$

b i $|z-5-4 i|=8 \Rightarrow \sqrt{(x-5)^{2}+(y-4)^{2}}=8$

$$
(x-5)^{2}+(y-4)^{2}=64
$$

When $x=0$:
$(0-5)^{2}+(y-4)^{2}=64$
$25+(y-4)^{2}=64$
$(y-4)^{2}=39$
$y=4 \pm \sqrt{39}$
Therefore:
$z=(4 \pm \sqrt{39}) \mathrm{i}$

2 b ii $\operatorname{Re}(z)=0$

When $y=0$:

$$
\begin{aligned}
& (x-5)^{2}+(0-4)^{2}=64 \\
& (x-5)^{2}+16=64 \\
& (x-5)^{2}=48
\end{aligned}
$$

$$
x=5 \pm 4 \sqrt{3}
$$

Therefore, $z=5 \pm 4 \sqrt{3}$
3 a $|z-5+7 i|=5$

b $|z-5+7 \mathrm{i}|=5 \Rightarrow \sqrt{(x-5)^{2}+(y+7)^{2}}=5$

$$
(x-5)^{2}+(y+7)^{2}=25
$$

3 c

$\tan \left(\frac{\theta}{2}\right)=\frac{5}{7}$
$\frac{\theta}{2}=\tan ^{-1}\left(\frac{5}{7}\right)$
$\theta=2 \tan ^{-1}\left(\frac{5}{7}\right)$
Therefore the maximum value of $\arg (z)$ is:
$2 \tan ^{-1}\left(\frac{5}{7}\right)-\frac{\pi}{2}$

4 a $|z-4-3 i|=8 \Rightarrow \sqrt{(x-4)^{2}+(y-3)^{2}}=8$
$(x-4)^{2}+(y-3)^{2}=64$
b

c $|z|_{\text {min }}=\mathrm{CY}-\mathrm{CO}$

$$
\begin{aligned}
& =8-5 \\
& =3 \\
|z|_{\max } & =C O+C X \\
& =5+8 \\
& =13
\end{aligned}
$$

5 a $|z+2-2 \sqrt{3} i|=2$

b The minimum value of $\arg \mathrm{z}$ is $\frac{\pi}{2}$
c $O C=\sqrt{(-2)^{2}+(2 \sqrt{3})^{2}}=4$
$\sin \left(\frac{\theta}{2}\right)=\frac{2}{4}=\frac{1}{2}$
$\frac{\theta}{2}=\frac{\pi}{6}$
$\theta=\frac{\pi}{3}$
Max value of $\arg z=\frac{\pi}{2}+\frac{\pi}{3}=\frac{5 \pi}{6}=2.51 \mathrm{rad}$
6 a $|z-6|=|z-2|$
The locus is the line $x=4$

b $|z+8|=|z-4|$
The locus is the line $x=-2$

Further Pure Maths 2

6 c $|z|=|z+6 \mathrm{i}|$
The locus is the line $y=-3$

d $|z+3 \mathrm{i}|=|z-8 \mathrm{i}|$
The locus is the line $y=2.5$

e $|z-2-2 \mathrm{i}|=|z+2+2 \mathrm{i}|$
The locus is the perpendicular bisector of the line segment joining $(2,2)$ and $(-2,-2)$
The locus if the line $y=x$

f $|z+4+\mathrm{i}|=|z+4+6 \mathrm{i}|$
The locus is the line $y=-3.5$

Further Pure Maths 2

6 g $|z+3-5 \mathrm{i}|=|z-7-5 \mathrm{i}|$
The locus is the line $x=2$

h $|z+4-2 \mathrm{i}|=|z-8+2 \mathrm{i}|$
The locus is the perpendicular bisector of the line segment joining $(-4,2)$ and $(8,-2)$
The locus is the line $y=3 x-6$

i $\frac{|z+3|}{|z-6 \mathrm{i}|}=1$
The locus is the perpendicular bisector of the line segment joining $(-3,0)$ and $(0,6)$
The locus is the line $y=-\frac{1}{2} x+\frac{9}{4}$

6 j $\frac{|z+6-\mathrm{i}|}{|z-10-5 \mathrm{i}|}=1$ is the perpendicular bisector of the line segment joining
$(-6,1)$ and $(10,5)$
The locus is the line $y=-4 x+11$

7 a $|z-3|=|z-6 i|$ is the perpendicular bisector of the line segment joining $(3,0)$ and $(0,6)$

b

The line joining $(3,0)$ and $(0,6)$ has gradient -2 . The gradient of the locus is $\frac{1}{2}$
Therefore the equation of the locus is: $y=\frac{1}{2} x+\frac{9}{4}$
The least possible value of $|z|$ is the magnitude of the line $O P$.
Since $O P$ is perpendicular to the locus it has gradient -2 .
Using $y-y_{1}=m\left(x-x_{1}\right)$ at $(0,0)$ with $m=-2$ gives:
$y=-2 x$
To find the coordinates of the point P, equate the equations of the locus and $O P$:
$\frac{1}{2} x+\frac{9}{4}=-2 x$
$\frac{5}{2} x=-\frac{9}{4} \Rightarrow x=-\frac{9}{10}$ and $y=\frac{18}{10}$
$|O P|=\sqrt{\left(-\frac{9}{10}\right)^{2}+\left(\frac{18}{10}\right)^{2}}$

$$
=\frac{9 \sqrt{5}}{10}
$$

8 a $|z+3+3 i|=|z-9-5 i|$ is the perpendicular bisector of the line segment joining $(-3,-3)$ and $(9,5)$
(0 ,

b The gradient of the line joining $(-3,-3)$ and $(9,5)$ is $m=\frac{5+3}{9+3}=\frac{2}{3}$
The gradient of the locus is, therefore, $-\frac{3}{2}$
The midpoint of the line joining $(-3,-3)$ and $(9,5)$ is $(3,1)$
Using $y-y_{1}=m\left(x-x_{1}\right)$ at $(3,1)$ with $m=-\frac{3}{2}$ gives:
$y-1=-\frac{3}{2}(x-3)$
$y-1=-\frac{3}{2} x+\frac{9}{2}$
$y=-\frac{3}{2} x+\frac{11}{2}$
c The gradient of the perpendicular from the locus is $\frac{2}{3}$
Using $y-y_{1}=m\left(x-x_{1}\right)$ at $(0,0)$ with $m=\frac{2}{3}$ gives:
$y=\frac{2}{3} x$
To find the coordinates of the point, P, where the perpendicular and the locus meet equate the equation of the locus and the equation of $O P$.

$$
\begin{aligned}
& -\frac{3}{2} x+\frac{11}{2}=\frac{2}{3} x \\
& \frac{13}{6} x=\frac{11}{2} \\
& x=\frac{33}{13} \text { and } x=\frac{22}{13}
\end{aligned}
$$

The least possible value of $|z|$ is the magnitude of the line $O P$.

$$
\begin{aligned}
|O P| & =\sqrt{\left(\frac{33}{13}\right)^{2}+\left(\frac{22}{13}\right)^{2}} \\
& =\frac{11 \sqrt{13}}{13}
\end{aligned}
$$

Further Pure Maths 2

9 a $|2-z|=3$ is the circle with centre $(2,0)$ and radius 3

$(x-2)^{2}+y^{2}=9$
b $|5 \mathrm{i}-z|=4$ is the circle with centre $(0,5)$ and radius 4

$$
x^{2}+(y-5)^{2}=16
$$

c $|3-2 i-z|=3$ is the circle with centre $(3,-2)$ and radius 3

$10 \mathbf{a} \arg z=\frac{\pi}{3}$ is the half-line originating at $(0,0)$ at an angle of $\frac{\pi}{3}$ to the positive x-axis.

Further Pure Maths 2

$\mathbf{1 0 b} \arg (z+3)=\frac{\pi}{4}$ is the half-line originating at $(-3,0)$ at an angle of $\frac{\pi}{4}$ to the positive x-axis.

c $\arg (z-2)=\frac{\pi}{2}$ is the half-line originating at $(2,0)$ at an angle of $\frac{\pi}{2}$ to the positive x-axis.

d $\arg (z+2+2 \mathrm{i})=-\frac{\pi}{4}$ is the half-line originating at $(-2,-2)$ at an angle of $-\frac{\pi}{4}$ to the positive x-axis.

e $\arg (z-1-i)=\frac{3 \pi}{4}$ is the half-line originating at $(1,1)$ at an angle of $\frac{3 \pi}{4}$ to the positive x-axis.

f $\arg (z+3 \mathrm{i})=\pi$ is the half-line originating at $(0,-3)$ at an angle of π to the positive x-axis.

Further Pure Maths 2

$\mathbf{1 0 g} \arg (z-1+3 \mathrm{i})=\frac{2 \pi}{3}$ is the half-line originating at $(1,-3)$ at an angle of $\frac{2 \pi}{3}$ to the positive x-axis.

h $\arg (z-3+4 i)=-\frac{\pi}{2}$ is the half-line originating at $(3,-4)$ at an angle of $-\frac{\pi}{2}$ to the positive x-axis.

i $\arg (z-4 i)=-\frac{3 \pi}{2}$ is the half-line originating at $(0,4)$ at an angle of $-\frac{3 \pi}{2}$ to the positive x-axis

$11 \mathbf{a}|z+2 i|=3$ is the circle with centre $(0,-2)$ and radius 3 .

11 b

$$
\begin{aligned}
& \cos \alpha=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& \cos \left(\frac{2 \pi}{3}\right)=\frac{|z|^{2}+2^{2}-3^{2}}{4|z|} \\
& -2|z|=|z|^{2}-5 \\
& |z|^{2}+2|z|-5=0 \\
& |z|=\frac{-2 \pm \sqrt{2^{2}-4(1)(-5)}}{2(1)} \\
& \quad=\frac{-2 \pm \sqrt{24}}{2} \\
& \quad=-1 \pm \sqrt{6}
\end{aligned}
$$

Since $|z|$ is positive $|z|=-1+\sqrt{6}$
12 a $|z+6+6 \mathrm{i}|=4$ is the circle with centre $(-6,-6)$ and radius 4

$|O C|=\sqrt{6^{2}+6^{2}}$

$$
=6 \sqrt{2}
$$

Therefore $\left|z_{\text {max }}\right|=6 \sqrt{2}+4$ and $\left|z_{\text {min }}\right|=6 \sqrt{2}-4$

12 b

$\tan \alpha=\frac{4}{10}$
$\alpha=0.3805 \ldots$ therefore $2 \alpha=0.7610 \ldots$
$-\pi+2 \alpha=-2.3805 \ldots$
Therefore, range of values with no common solutions is $(-2.38, \pi)$

13 a $|z|=5$ is the circle with centre $(0,0)$ and radius 5

b The equation of the circle is:

$$
x^{2}+y^{2}=25
$$

When $x=-4$
$16+y^{2}=25$
$y= \pm 3$
Since the complex number must satisy both $|z|=5$ and $\arg (z+4)=\frac{\pi}{2}$ it is $z=-4+3 i$
$14 \mathbf{a}|z-2-2 \mathrm{i}|=2$ is the circle with centre $(2,2)$ and radius 2

14 b $\quad \arg (z-2-2 i)=\frac{\pi}{6}$

$\sin \left(\frac{\pi}{6}\right)=\frac{A B}{2}$
$A B=2 \sin \left(\frac{\pi}{6}\right)$

$$
=1
$$

So the perpendicular distance from the x-axis to A is 3

$$
\begin{aligned}
& \cos \left(\frac{\pi}{6}\right)=\frac{C B}{2} \\
& C B=2 \cos \left(\frac{\pi}{6}\right) \\
& \quad=\sqrt{3}
\end{aligned}
$$

So the perpendicular distance from the y-axis to A is $2+\sqrt{3}$
So $z=(2+\sqrt{3})+3 \mathrm{i}$
15a $|z-2 \mathrm{i}|=|z-8 \mathrm{i}|$ is the line $y=5$
b $\arg (z-2-i)=\frac{\pi}{4}$ is the half-line originating from $(2,1)$ at $\frac{\pi}{4}$ to the positive horizontal axis.

15 c

$16 \mathbf{a}|z-3+2 \mathrm{i}|=4$ is the circle with centre $(3,-2)$ and radius 4
b $\arg (z-1)=-\frac{\pi}{4}$ is the half-line originating from $(1,0)$ at $-\frac{\pi}{4}$ to the positive horizontal axis.

c

$$
\begin{aligned}
& 2 x^{2}=16 \\
& x=2 \sqrt{2}
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& a=3+2 \sqrt{2} \\
& b=-2-2 \sqrt{2}
\end{aligned}
$$

17 a $\arg (z)=\frac{\pi}{3}$ is the half-line originating from $(0,0)$ at $\frac{\pi}{3}$ to the positive horizontal axis. $\arg (z-4)=\frac{\pi}{2}$ is the half-line originating from $(4,0)$ at $\frac{\pi}{2}$ to the positive horizontal axis.

$$
\begin{aligned}
& \tan \left(\frac{\pi}{3}\right)=\frac{x}{4} \\
& x=4 \tan \left(\frac{\pi}{3}\right) \\
& \quad=4 \sqrt{3}
\end{aligned}
$$

Therefore $z=4+4 \sqrt{3} \mathrm{i}$
b

$\arg (z-8)$ is the angle between the positive x-axis and the half-line
Therefore, $\arg (z-8)=\frac{2 \pi}{3}$
$\mathbf{1 8} \mathbf{a} \arg (z+4)=\frac{\pi}{3}$ is the half-line originating from $(-4,0)$ at $\frac{\pi}{3}$ to the positive horizontal axis.

b $\sin \left(\frac{\pi}{3}\right)=\frac{d}{4}$

$$
\begin{aligned}
d & =4 \sin \left(\frac{\pi}{3}\right) \\
& =2 \sqrt{3}
\end{aligned}
$$

Therefore $\left|z_{\text {min }}\right|=2 \sqrt{3}$
19 a $|z+8-4 i|=2$ is the circle with centre $(-8,4)$ and radius 2

Further Pure Maths 2

$19 \mathbf{b} \arg (z+15-2 i)=\frac{\pi}{3}$ is the half-line originating from $(-15,2)$ at 2α to the positive horizontal axis.

$\tan \alpha=\frac{2}{7} \Rightarrow \sin \alpha=\frac{2}{\sqrt{53}}$
$\alpha=\sin ^{-1}\left(\frac{2}{\sqrt{53}}\right)$
$2 \alpha=2 \sin ^{-1}\left(\frac{2}{\sqrt{53}}\right)$ as required

19 c

$$
\begin{aligned}
|A C| & =\sqrt{4^{2}+4^{2}} \\
& =4 \sqrt{2}
\end{aligned}
$$

Therefore:
$|B A|=4 \sqrt{2}-2$
$\cos \left(\frac{\pi}{4}\right)=\frac{|A D|}{4 \sqrt{2}-2}$
$A D=4-\sqrt{2}$
So the x-coordinate is:
$-4-(4-\sqrt{2})=-8+\sqrt{2}$
And the y-coordinate is:
$4-\sqrt{2}$
The coordinates of B are $(-8+\sqrt{2}, 4-\sqrt{2})$
And by symmetry the coordinates of E are $(-8-\sqrt{2}, 4+\sqrt{2})$
$\mathrm{z}=(-8+\sqrt{2})+(4-\sqrt{2}) \mathrm{I}$ and $z=(-8-\sqrt{2})+(4+\sqrt{2}) \mathrm{i}$

Further Pure Maths 2

Challenge

$|z+\mathrm{i}|=5$ is the circle with centre $(0,-1)$ and radius 5
$|z-4 \mathrm{i}|<3$ is area enclosed by the circle with centre $(0,4)$ and radius <3
$\arg (z-2 \mathrm{i})=\theta,-\pi<\theta \leq \pi$

The Cartesian equations on the circles are:
$x^{2}+(y+1)^{2}=25$ and $x^{2}+(y-4)^{2}=9$
$25-(y+1)^{2}+(y-4)^{2}=9$
$25-\left(y^{2}+2 y+1\right)+\left(y^{2}-8 y+16\right)=9$
$40-10 y=9$
$10 y=31$
$y=\frac{31}{10}$
Therefore:
$x^{2}+\left(\frac{41}{10}\right)^{2}=25$
$x^{2}=\frac{819}{100}$
$x^{2}= \pm \frac{3 \sqrt{91}}{10}$

$\begin{aligned} \tan \alpha & =\frac{\frac{11}{10}}{\frac{3 \sqrt{91}}{10}} \\ & =0.3843 \ldots \\ \pi-\alpha & =2.7572 \ldots \\ 0.384 & <\theta<2.76 \text { (} 3 \text { s.f.) }\end{aligned}$

